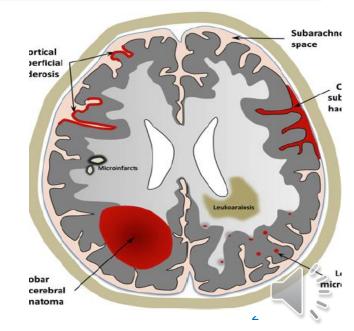


Angiopathie Amyloïde Cérébrale Nouveaux critères diagnostiques radiologiques TDM et IRM (Boston v2.0 et Edimbourg)

Dr L.Grangeon
Neurologie CHU de Rouen

22 juin 2023

ANGIOPATHIE AMYLOIDE À AB


- Dépôts Aβ40 et Aβ42 (Aβ40 isoforme prédominant)
- Continuum avec la maladie d'Alzheimer (MA)
 (Aβ42 parenchymateux)
- ➤ 2 présentations principales:
- Hématomes intracérébraux lobaires spontanés
- Déclin cognitif progressif
- ➤ Mais aussi:
 - « TFNE » ou auras amyloïdes liée à de l'hémosidérose
 - Manifestations ischémiques (micro infarctus plutôt silencieux)
 - Formes inflammatoires AAC-ri
- > Critères diagnostiques basés soit sur l'étude anatomopathologique

soit sur l'imagerie par IRM

> Critères modifiés v2.0 de Boston, 2022

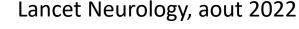
Rovelet-Lecrux et al, Nature Genetics, 2006 Charidimou et al, Lancet, 2022 Greenberg et al., Nature, 2020

ANGIOPATHIE AMYLOIDE À AB

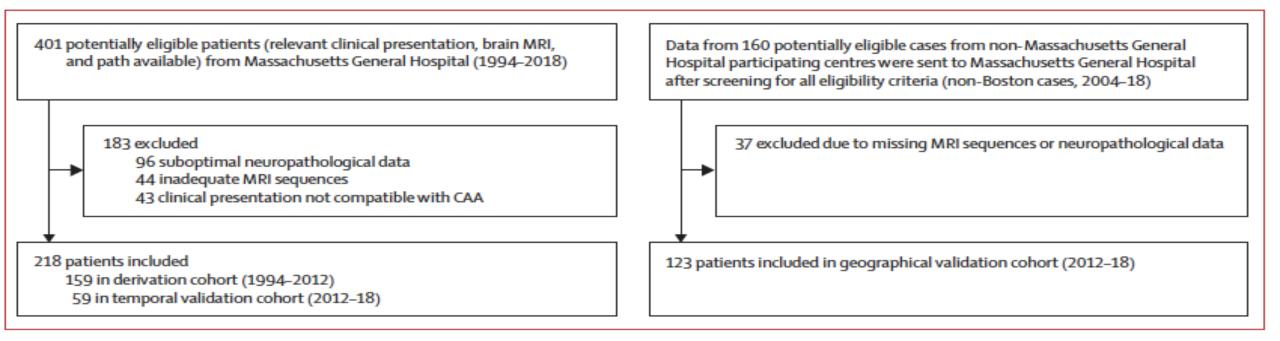
Hémorragie sous-arachnoïdienne aigüe Hémosidérose corticale superficielle Micro infarctus Microinfarcts Leucopathie - Prédominance postérieure - Pattern « multi spot »

Micro saignements strictement lobaires

Hématome lobaire (postérieur++)


Anciennes versions des critères

	Classic Boston criteria ²	Modified Boston criteria	
Definite CAA	Full postmortem examination demonstrating:	No modification ^a	
	Lobar, cortical, or corticosubcortical hemorrhage		
	Severe CAA with vasculopathy		
	Absence of other diagnostic lesion	Microinfarcts	
Probable CAA with supporting pathology	Clinical data and pathologic tissue (evacuated hematoma or cortical biopsy) demonstrating:	No modification ^a	
	Lobar, cortical, or corticosubcortical hemorrhage		
	Some degree of CAA in specimen		
	Absence of other diagnostic lesion		
Probable CAA	Clinical data and MRI or CT demonstrating:	Clinical data and MRI or CT demonstrating:	
	Multiple hemorrhages restricted to lobar, cortical, or cortical regions (cerebellar hemorrhage allowed)	 Multiple hemorrhages restricted to lobar, cortical, or corticosubcortical regions (cerebellar hemorrhage allowed) or 	
	Age ≥55 y	 Single lobar, cortical, or corticosubcortical hemorrhage and focal^b or disseminated^c superficial siderosis 	
	Absence of other cause of hemorrhage	Age ≥55 y	
		 Absence of other cause of hemorrhage or superficial siderosis 	
Possible CAA	Clinical data and MRI or CT demonstrating:	Clinical data and MRI or CT demonstrating:	
	 Single lobar, cortical, or corticosubcortical hemorrhage 	 Single lobar, cortical, or corticosubcortical hemorrhage or 	
	Age ≥55 y	 Focal^b or disseminated^c superficial siderosis 	
	Absence of other cause of hemorrhage	Age ≥55 y	
		 Absence of other cause of hemorrhage or superficial siderosis 	



The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study

Andreas Charidimou, Gregoire Boulouis, Matthew P Frosch, Jean-Claude Baron, Marco Pasi, Jean Francois Albucher, Gargi Banerjee, Carmen Barbato, Fabrice Bonneville, Sebastian Brandner, Lionel Calviere, François Caparros, Barbara Casolla, Charlotte Cordonnier, Marie-Bernadette Delisle, Vincent Deramecourt, Martin Dichgans, Elif Gokcal, Jochen Herms, Mar Hernandez-Guillamon, Hans Rolf Jager, Zane Jaunmuktane, Jennifer Linn, Sergi Martinez-Ramirez, Elena Martínez-Sáez, Christian Mawrin, Joan Montaner, Solene Moulin, Jean-Marc Olivot, Fabrizio Piazza, Laurent Puy, Nicolas Raposo, Mark A Rodrigues, Sigrun Roeber, Jose Rafael Romero, Neshika Samarasekera, Julie A Schneider, Stefanie Schreiber, Frank Schreiber, Corentin Schwall, Colin Smith, Levente Szalardy, Pascale Varlet, Alain Viguier, Joanna M Wardlaw, Andrew Warren, Frank A Wollenweber, Marialuisa Zedde, Mark A van Buchem, M Edip Gurol, Anand Viswanathan, Rustam Al-Shahi Salman, Eric E Smith, David J Werring, Steven M Greenberg

Age > 50 ans

Probable si hémosidérose disséminée

Intégration marqueurs non hémorragiques

Panel: Boston criteria version 2.0 for sporadic cerebral amyloid angiopathy

1. Definite CAA

Full brain post-mortem examination demonstrating:

- Spontaneous intracerebral haemorrhage, transient focal neurological episodes, convexity subarachnoid haemorrhage, or cognitive impairment or dementia
- Severe CAA with vasculopathy
- Absence of other diagnostic lesion

2. Probable CAA with supporting pathology

Clinical data and pathological tissue (evacuated haematoma or cortical biopsy) demonstrating:

- Presentation with spontaneous intracerebral haemorrhage, transient focal neurological episodes, convexity subarachnoid haemorrhage, or cognitive impairment or dementia
- Some degree of CAA in specimen
- Absence of other diagnostic lesion

3. Probable CAA

For patients aged 50 years and older, clinical data and MRI demonstrating:

Presentation with spontaneous intracerebral haemorrhage, transient focal neurological episodes, or cognitive impairment or dementia

At least two of the following strictly lobar haemorrhagic lesions on T2*-weighted MRI, in any combination: intracerebral haemorrhage, cerebral microbleeds, or foci of cortical superficial siderosis or convexity subarachnoid haemorrhage

OR

 One lobar haemorrhagic lesion plus one white matter feature (severe perivascular spaces in the centrum semiovale or white matter hyperintensities in a multispot pattern)†

- Absence of any deep haemorrhagic lesions (ie, intracerebral haemorrhage or cerebral microbleeds) on T2*-weighted MRI
- Absence of other cause of haemorrhagic lesions‡
- Haemorrhagic lesion in cerebellum not counted as either lobar or deep haemorrhagic lesion

4. Possible CAA

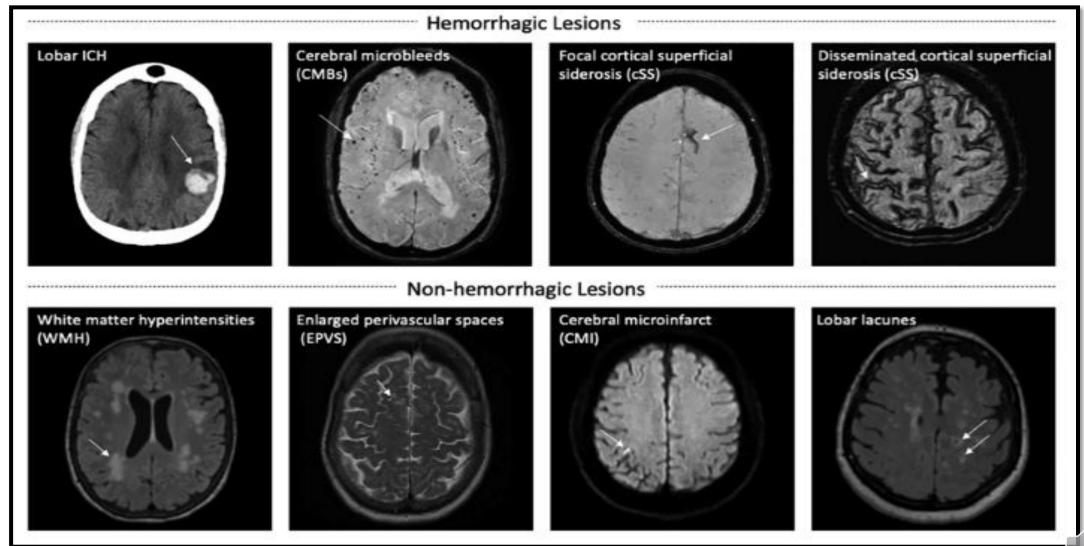
For patients aged 50 years and older, clinical data and MRI demonstrating:

- Presentation with spontaneous intracerebral haemorrhage, transient focal neurological episodes, or cognitive impairment or dementia
- Absence of other cause of haemorrhage‡
- One strictly lobar haemorrhagic lesion on T2*-weighted MRI: intracerebral haemorrhage, cerebral microbleeds, or foci of cortical superficial siderosis or convexity subarachnoid haemorrhage

OR

- One white matter feature (severe visible perivascular spaces in the centrum semiovale or white matter hyperintensities in a multispot pattern)†
- Absence of any deep haemorrhagic lesions (ie, intracerebral haemorrhage or cerebral microbleeds) on T2*-weighted MRI
- Absence of other cause of haemorrhagic lesions‡
- Haemorrhagic lesion in cerebellum not counted as either lobar or deep haemorrhagic lesion

CAA-cerebral amyloid angiopathy. †Notable changes from the Boston criteria v1.5. ‡Other causes of haemorrhagic lesion: antecedent head trauma, haemorrhagic transformation of an ischaemic stroke, arteriovenous malformation, haemorrhagic tumour, CNS vasculitis. Other causes of cortical superficial siderosis and acute convexity subarachnoid haemorrhage should also be excluded.


Hématome cervelet non comptabilisé

Exclusion si saignement profond

Développement de nouveaux marqueurs radiologiques

Développement de nouveaux marqueurs radiologiques

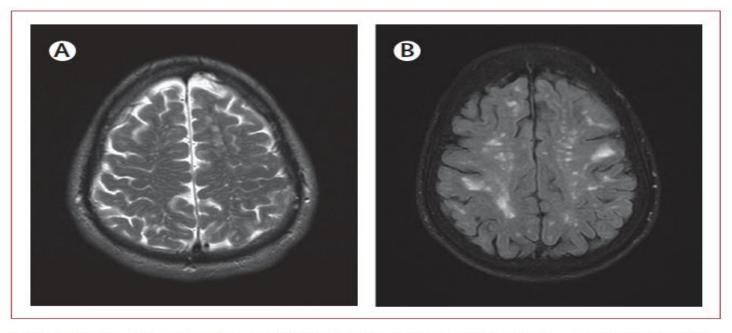
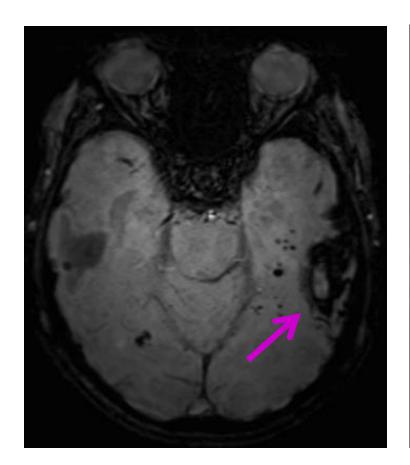
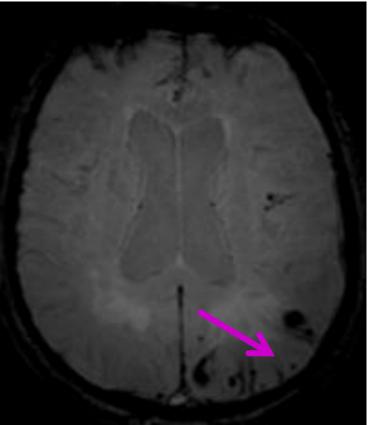
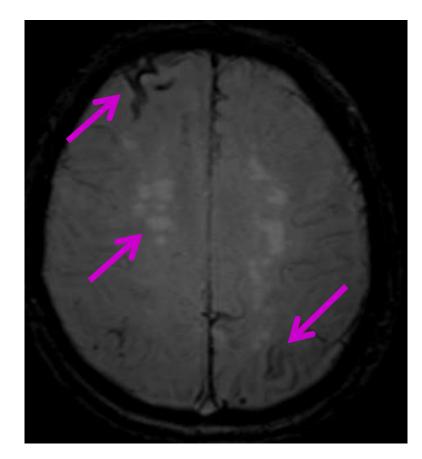


Figure 1: Non-haemorrhagic white matter MRI markers assessed and finally included in the Boston criteria v2.0

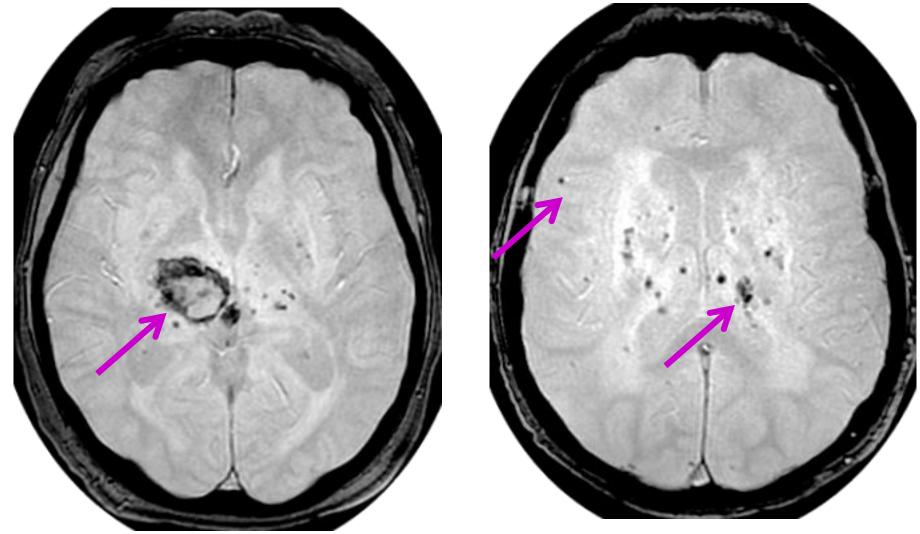
(A) Severe centrum semiovale perivascular spaces, identified on axial T2-weighted images, ¹⁷ are defined as more than 20 visible perivascular spaces in the centrum semiovale of one hemisphere. ⁶ (B) The multispot white matter hyperintensity pattern is defined as more than ten T2-weighted fluid-attenuated inversion recovery small circular or ovoid hyperintense lesions in the subcortical white matter of both hemispheres. ⁸


AVC Diagnostic différentiel chez le sujet âgé: HTA ++

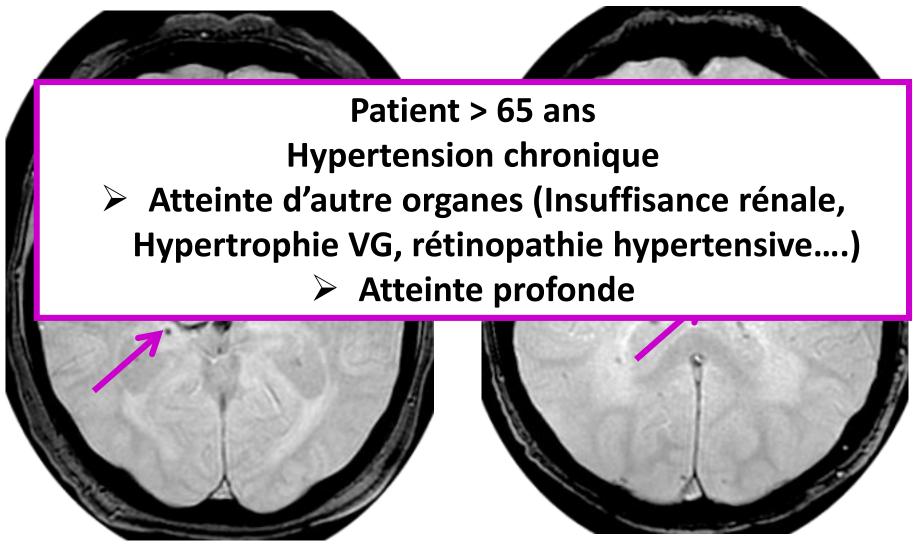

?	AAC?	Microangiopathie ²	
		hypertensive?	
Hématomes&érébraux2	Lobaire ²	Profond@Noyaux@ris@	
		centraux,@ronc@érébral)2	
Infarctus@érébral2	Rare?	Lacunes 2	
Microsaignements2	Exclusivement T obaire2	Profonds p rincipalement2	
Sidérose@ortical2	40% des das 2	Rare ²	
superficielle2			
Espacespéri-vasculaires?	Centres B emi-ovales2	Noyaux@ros@entraux2	
dilatés2			
Leucopathie la asculaire la	Prédominance p ostérieure2	Toutes@ocalisation,@tteinte@	
		duttronctérébralt	
Atrophie@érébrale@	?	?	



En images: Homme 74 ans

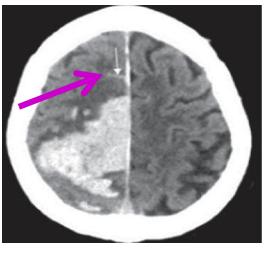


En images: Homme 74 ans



En images: Femme 78 ans

En images: Femme 78 ans



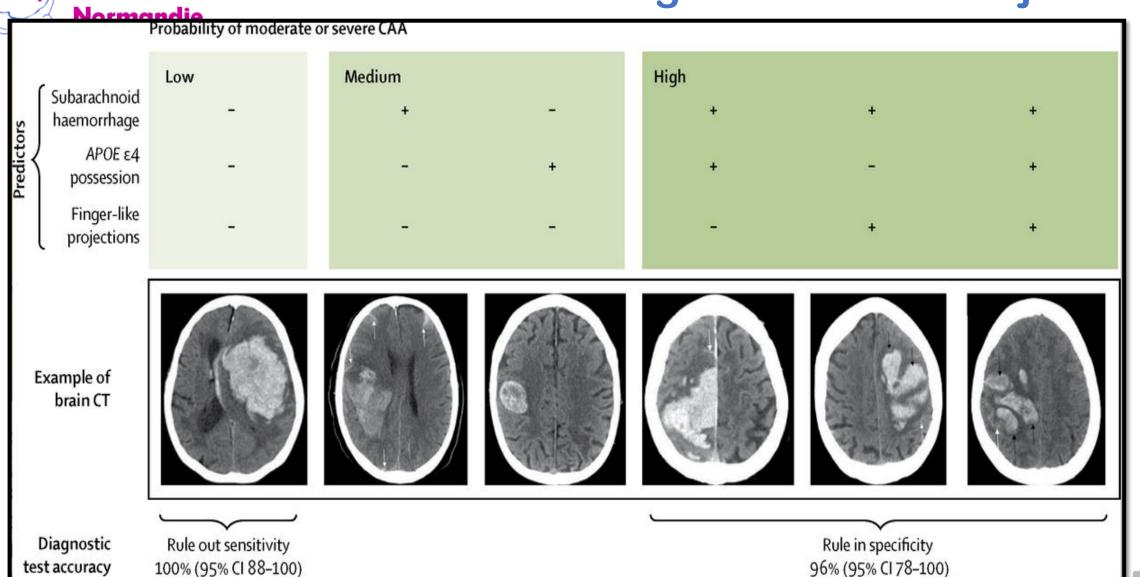
CRITÈRES D'EDIMBOURG TDM SANS INJECTION

➤Intéressant dans un contexte d'urgence / Accès limité à l'IRM / Contre-indication IRM

- ➤ Impact sur décisions chirurgicales
- ➤ Orientation du patient
- ≥3 marqueurs:
 - > Extension en doigt de gant
 - > HSA associée à l'hématome
 - ➤ Génotype APOE4 (???)
- ➤ Très bonne valeur prédictive positive :
 - ➤ Si présents = Diagnostic AAC fort probable
 - Moins bonne valeur prédictive négative

HSA associée

Extension en doigt de gant



Rodrigues et al, Lancet Neurol, 2018

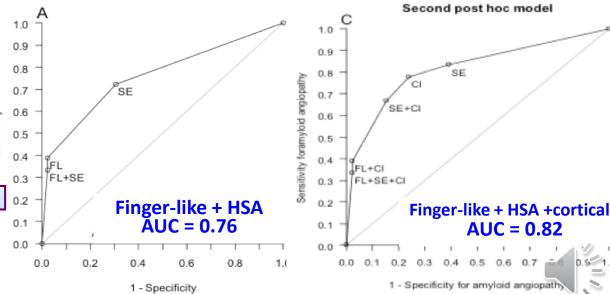
Ne permet pas de se passer d'une injection!!!
Toujours recherche cause concurrente

AVC

Critères d'Edimbourg sur TDM sans injection

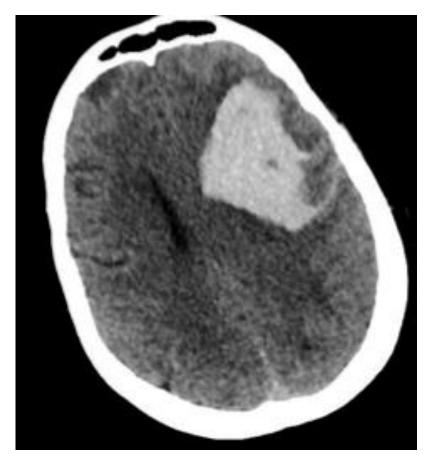
CRITÈRES D'EDIMBOURG TDM SANS INJECTION

Validation externe


- en utilisant l'IRM comme gold standard
- en excluant le génotype APOE

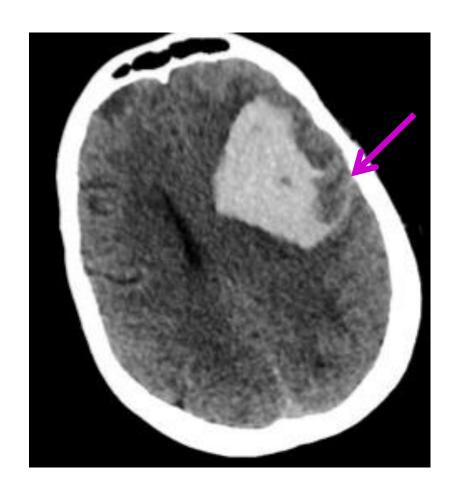
102 patients se présentant en urgence pour HIP lobaire spontané

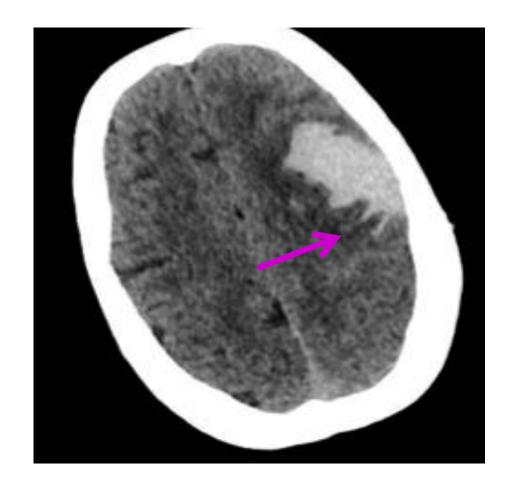
- Classés en AAC / Non AAC / Indéterminés
- Double lecture radiologique


Predicted	Sensitivity	Specificity	Positive predictive	Negative predictive
probability	% [CI95%]	% [CI95%]	value	value
threshold			% [CI95%]	% [CI95%]
(Edinburgh				
criteria fullfilled)				
≥ 22% (None)	100%	0%	44% [33-55%]	N/A 24% [12-39%] 5
≥ 62% (SE)	72% [55-86%]	70% [54-82%]	65% [48-79%]	24% [12-39%]
	39% [23-57%]	98% [88-100%]	93% [68-100%]	33% [22-45%]
≥ 84% (FL)				
= 97% (FL+SE)	33% [19-51%]	98% [88-100%]	92% [64-100%]	35% [24-47%]


Grangeon et al, J. Neuroradiology. 2022

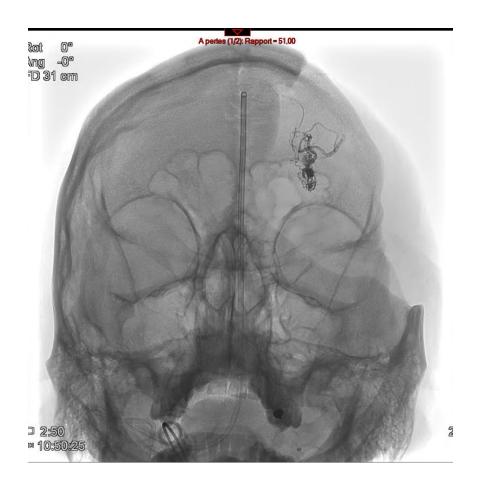
En images « rouennaises »: Femme 70 ans

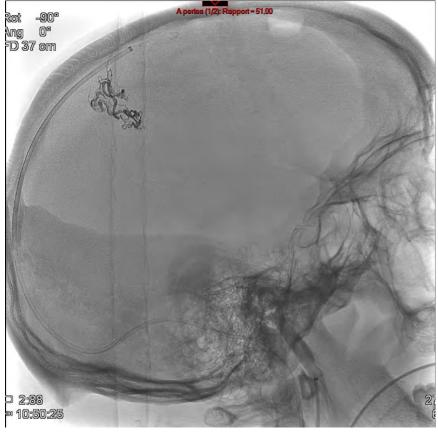



Critères remplis?

En images « rouennaises »: Femme 70 ans

En images « rouennaises »: Homme 34 ans




Critères remplis?

Je ne suis pas NRI mais....

Merci de votre attention

